Tensor product representation of a topological ordered phase: Necessary symmetry conditions

نویسندگان

  • Xie Chen
  • Bei Zeng
  • Zheng-Cheng Gu
  • Isaac L. Chuang
  • Xiao-Gang Wen
چکیده

Citation Chen, Xie et al. " Tensor product representation of a topological ordered phase: Necessary symmetry conditions. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The tensor product representation of quantum states leads to a promising variational approach to study quantum phase and quantum phase transitions, especially topological ordered phases which are impossible to handle with conventional methods due to their long-range entanglement. However, an important issue arises when we use tensor product states ͑TPSs͒ as variational states to find the ground state of a Hamiltonian: can arbitrary variations in the tensors that represent ground state of a Hamiltonian be induced by local perturbations to the Hamiltonian? Starting from a tensor product state which is the exact ground state of a Hamiltonian with Z 2 topological order, we show that, surprisingly, not all variations in the tensors correspond to the variation in the ground state caused by local perturbations of the Hamiltonian. Even in the absence of any symmetry requirement of the perturbed Hamiltonian, one necessary condition for the variations in the tensors to be physical is that they respect certain Z 2 symmetry. We support this claim by calculating explicitly the change in topological entanglement entropy with different variations in the tensors. This finding will provide important guidance to numerical variational study of topological phase and phase transitions. It is also a crucial step in using TPS to study universal properties of a quantum phase and its topological order.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducibility of the tensor product of Albeverio's representations of the Braid groups $B_3$ and $B_4$

‎We consider Albeverio's linear representations of the braid groups $B_3$ and $B_4$‎. ‎We specialize the indeterminates used in defining these representations to non zero complex numbers‎. ‎We then consider the tensor products of the representations of $B_3$ and the tensor products of those of $B_4$‎. ‎We then determine necessary and sufficient conditions that guarantee the irreducibility of th...

متن کامل

Tensor-product representations for string-net condensed states

Citation Gu, Zheng-Cheng et al. " Tensor-product representations for string-net condensed states. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We show that gene...

متن کامل

Distance-based topological indices of tensor product of graphs

Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...

متن کامل

Product version of reciprocal degree distance of composite graphs

A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.

متن کامل

Symmetry Fractionalization and Topological Order

In this article, I would first introduce a new phase of matter with symmetry fractionalization and symmetry protected topological orders. Such a system is beyond Landau's symmetry breaking theory. For a symmetry protected topological ordered state, even without symmetry breaking, it is still different from a conventional non-symmetry breaking one as it cannot be adiabatically connected to a tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010